Chemical Self-Doping of Organic Nanoribbons for High Conductivity and Potential Application as Chemiresistive Sensor.

نویسندگان

  • Na Wu
  • Chen Wang
  • Benjamin R Bunes
  • Yaqiong Zhang
  • Paul M Slattum
  • Xiaomei Yang
  • Ling Zang
چکیده

Intrinsically low electrical conductivity of organic semiconductors hinders their further development into practical electronic devices. Herein, we report on an efficient chemical self-doping to increase the conductivity through one-dimensional stacking arrangement of electron donor-acceptor (D-A) molecules. The D-A molecule employed was a 1-methylpiperidine-substituted perylene tetracarboxylic diimide (MP-PTCDI), of which the methylpiperidine moiety is a strong electron donor, and can form a charge transfer complex with PTCDI (acting as the acceptor), generating anionic radical of PTCDI as evidenced in molecular solutions. Upon self-assembling into nanoribbons through columnar π-π stacking, the intermolecular charge transfer interaction between methylpiperidine and PTCDI would be enhanced, and the electrons generated are delocalized along the π-π stacking of PTCDIs, leading to enhancement in conductivity. The conductive fiber materials thus produced can potentially be used as chemiresistive sensor for vapor detection of electron deficient chemicals such as hydrogen peroxide, taking advantage of the large surface area of nanofibers. As a major component of improvised explosives, hydrogen peroxide remains a critical signature chemical for public safety screening and monitoring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks.

Applications of porous metal-organic frameworks (MOFs) in electronic devices are rare, owing in large part to a lack of MOFs that display electrical conductivity. Here, we describe the use of conductive two-dimensional (2D) MOFs as a new class of materials for chemiresistive sensing of volatile organic compounds (VOCs). We demonstrate that a family of structurally analogous 2D MOFs can be used ...

متن کامل

Rectification in Graphene Self-Switching Nanodiode Using Side Gates Doping

The electrical properties and rectification behavior of the graphene self-switching diodes by side gates doping with nitrogen and boron atoms were investigated using density functional tight-binding method. The devices gates doping changes the electrical conductivity of the side gates and the semiconductor channel nanoribbons. As a result, the threshold voltage value under the forward bias is s...

متن کامل

Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture.

Nitrogen-doped graphene nanoribbon aerogels (N-GNRAs) are fabricated through the self-assembly of graphene oxide nanoribbons (GONRs) combined with a thermal annealing process. Amino-groups are grafted to the surface of graphene nanoribbons (GNRs) by an epoxy ring-opening reaction. High nitrogen doping level (7.6 atm% as confirmed by elemental analysis) is achieved during thermal treatment resul...

متن کامل

Drawing Sensors with Ball-Milled Blends of Metal-Organic Frameworks and Graphite

The synthetically tunable properties and intrinsic porosity of conductive metal-organic frameworks (MOFs) make them promising materials for transducing selective interactions with gaseous analytes in an electrically addressable platform. Consequently, conductive MOFs are valuable functional materials with high potential utility in chemical detection. The implementation of these materials, howev...

متن کامل

Potassium Iodide-Functionalized Polyaniline Nanothin Film Chemiresistor for Ultrasensitive Ozone Gas Sensing

Polyaniline (PANI) nanostructures have been widely studied for their sensitivity to atmospheric pollutants at ambient conditions. We recently showed an effective way to electropolymerize a PANI nanothin film on prefabricated microelectrodes, and demonstrated its remarkable sensing performance to be comparable to that of a one-dimensional nanostructure, such as PANI nanowires. In this work, we r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 8 19  شماره 

صفحات  -

تاریخ انتشار 2016